Search results for "Coxeter group"

showing 8 items of 8 documents

IRREDUCIBLE COXETER GROUPS

2004

We prove that a non-spherical irreducible Coxeter group is (directly) indecomposable and that an indefinite irreducible Coxeter group is strongly indecomposable in the sense that all its finite index subgroups are (directly) indecomposable. Let W be a Coxeter group. Write W = WX1 × ⋯ × WXb × WZ3, where WX1, … , WXb are non-spherical irreducible Coxeter groups and WZ3 is a finite one. By a classical result, known as the Krull–Remak–Schmidt theorem, the group WZ3 has a decomposition WZ3 = H1 × ⋯ × Hq as a direct product of indecomposable groups, which is unique up to a central automorphism and a permutation of the factors. Now, W = WX1 × ⋯ × WXb × H1 × ⋯ × Hq is a decomposition of W as a dir…

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General MathematicsGroup Theory (math.GR)0102 computer and information sciencesPoint group01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics::Group TheoryFOS: Mathematics0101 mathematicsLongest element of a Coxeter groupMathematics::Representation Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsMathematics::CombinatoricsCoxeter notationMathematics::Rings and Algebras010102 general mathematicsCoxeter group010201 computation theory & mathematicsCoxeter complexArtin group20F55Indecomposable moduleMathematics - Group TheoryCoxeter elementInternational Journal of Algebra and Computation
researchProduct

Artin groups of spherical type up to isomorphism

2003

AbstractWe prove that two Artin groups of spherical type are isomorphic if and only if their defining Coxeter graphs are the same.

Pure mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]20F36Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics::Group Theory0103 physical sciencesArtin L-functionFOS: Mathematics0101 mathematicsMathematics::Representation Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsGroup isomorphismAlgebra and Number TheoryNon-abelian class field theory010102 general mathematicsCoxeter groupConductorArtin group010307 mathematical physicsArtin reciprocity lawIsomorphismMathematics - Group TheoryJournal of Algebra
researchProduct

Commensurability classification of a family of right-angled Coxeter groups

2008

We classify the members of an infinite family of right-angled Coxeter groups up to abstract commensurability.

Condensed Matter::Quantum GasesPure mathematicsApplied MathematicsGeneral MathematicsCoxeter groupPoint groupCommensurability (mathematics)AlgebraMathematics::Group TheoryCoxeter complexArtin groupCondensed Matter::Strongly Correlated ElectronsMathematics::Representation TheoryCoxeter elementMathematicsProceedings of the American Mathematical Society
researchProduct

Lectures on Artin Groups and the $$K(\pi ,1)$$ Conjecture

2014

This paper consists of the notes of a mini-course (3 lectures) on Artin groups that focuses on a central question of the subject, the \(K(\pi ,1)\) conjecture.

Pure mathematicsConjectureCoxeter groupPiArtin groupSubject (documents)Mathematics
researchProduct

Coxeter on People and Polytopes

2004

H. S. M. Coxeter, known to his friends as Donald, was not only a remarkable mathematician. He also enriched our historical understanding of how classical geometry helped inspire what has sometimes been called the nineteenth-century’s non-Euclidean revolution (Fig. 35.1). Coxeter was no revolutionary, and the non-Euclidean revolution was already part of history by the time he arrived on the scene. What he did experience was the dramatic aftershock in physics. Countless popular and semi-popular books were written during the early 1920s expounding the new theory of space and time propounded in Einstein’s general theory of relativity. General relativity and subsequent efforts to unite gravitati…

SpacetimeGeneral relativityGeneral MathematicsCoxeter groupArt historyPhysics::History of Physicssymbols.namesakeHistory and Philosophy of ScienceDifferential geometryCoxeter complexsymbolsArtin groupEinsteinCoxeter elementThe Mathematical Intelligencer
researchProduct

Automorphisms and abstract commensurators of 2-dimensional Artin groups

2004

In this paper we consider the class of 2-dimensional Artin groups with connected, large type, triangle-free defining graphs (type CLTTF). We classify these groups up to isomorphism, and describe a generating set for the automorphism group of each such Artin group. In the case where the defining graph has no separating edge or vertex we show that the Artin group is not abstractly commensurable to any other CLTTF Artin group. If, moreover, the defining graph satisfies a further `vertex rigidity' condition, then the abstract commensurator group of the Artin group is isomorphic to its automorphism group and generated by inner automorphisms, graph automorphisms (induced from automorphisms of the…

Vertex (graph theory)20F67CommensuratorCoxeter groupCoxeter group20F36InverseGroup Theory (math.GR)Automorphism2–dimensional Artin group20F36 20F55 20F65 20F67CombinatoricsMathematics::Group Theorytriangle freeGenerating set of a groupFOS: Mathematicscommensurator groupArtin groupGeometry and TopologyIsomorphism20F5520F65graph automorphismsMathematics - Group TheoryMathematics
researchProduct

Commensurators of parabolic subgroups of Coxeter groups

1996

Let $(W,S)$ be a Coxeter system, and let $X$ be a subset of $S$. The subgroup of $W$ generated by $X$ is denoted by $W_X$ and is called a parabolic subgroup. We give the precise definition of the commensurator of a subgroup in a group. In particular, the commensurator of $W_X$ in $W$ is the subgroup of $w$ in $W$ such that $wW_Xw^{-1}\cap W_X$ has finite index in both $W_X$ and $wW_Xw^{-1}$. The subgroup $W_X$ can be decomposed in the form $W_X = W_{X^0} \cdot W_{X^\infty} \simeq W_{X^0} \times W_{X^\infty}$ where $W_{X^0}$ is finite and all the irreducible components of $W_{X^\infty}$" > are infinite. Let $Y^\infty$ be the set of $t$ in $S$ such that $m_{s,t}=2$" > for all $s\in X^\i…

CombinatoricsMathematics::Group TheoryGroup (mathematics)Applied MathematicsGeneral MathematicsCoxeter groupCommensuratorFOS: MathematicsGroup Theory (math.GR)Mathematics - Group TheoryMathematics
researchProduct

Automorphism groups of some affine and finite type Artin groups

2004

We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type ˜ An−1 and ˜ Cn−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping class groups we are able to determine the automorphism groups of each member of these four infinite families of Artin groups. A rank n Coxeter matrix is a symmetric n × n matrix M with integer entries mij ∈ N ∪ {∞} where mij ≥ 2 for ij, and mii = 1 for all 1 ≤ i ≤ n. Given any rank n Coxeter matr…

Discrete mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General Mathematics010102 general mathematicsCoxeter groupBraid group20F36Group Theory (math.GR)Automorphism01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]ConductorCombinatoricsMathematics::Group TheoryGroup of Lie typeSymmetric group0103 physical sciencesFOS: MathematicsRank (graph theory)Artin group010307 mathematical physics0101 mathematicsMathematics - Group Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Mathematics
researchProduct